HW-201 – ИК датчик препятствий

HW-201 - ИК датчик препятствий
HW-201 фото

Предлагаю вашему вниманию инфракрасный (ИК) датчик препятствий HW-201. Так же бывают и другие датчики с небольшими изменениями в схеме и названии, к примеру – MH-B, FC-51, YL-63.

Зашёл недавно в местный радиомагазин, а там молодые люди интересуются у продавца о увеличении дальности обнаружения препятствия. Слышал в обрывках фраз, что нужно что-то закоротить или подключить «мозги» — Ардуино. Я даже не пытался встрять в разговор – схемы то нет. Поэтому и приобрёл и себе пару датчиков препятствий, чтобы разобраться в этом вопросе.

Схему «поднял» и вот публикую её:

HW-201 - ИК датчик препятствий
HW-201 схема

Схема проста до безобразия, поэтому у неё и такие скромные технические данные. Поднять чувствительность какими-то перемычками не представляется возможным. В [1] указан потребляемый ток датчика – 10 мА (и другие данные). Откуда такие скромные данные не понятно, ведь только ИК – светодиод тянет из питания 3,3 В — 20 мА, а при напряжении питания 5 В – 36 мА! Снизить потребляемый ток можно, если питать ИК – светодиод пульсирующим током, смотрите в [3] о максимальном импульсном токе.

Для снижения этого тока, собрал стандартный генератор импульсов на свободном компараторе U1.2 (смотрите схему на рис. 2 а), со скважностью включения ИК – светодиода 10 %, которую обеспечивают диод VD1 и резистор R11 (позиционные обозначения деталей продолжены от начальной схемы). Потребляемый ток снизился до 5,3 мА при питании 3,3 В, и до 8,8 мА при питании 5 В. Частота вспышек ИК – светодиода, при указанных на схеме номиналах деталей, примерно 120 кГц. Такая частота в данной схеме, ничего, кроме снижения потребляемого тока не даёт. И её можно установить любую, подбирая номинал конденсатора C3.

HW-201 - ИК датчик препятствий
HW-201 передача

Если интересно будет визуализировать работу генератора, то можно собрать схему на рисунке 2 б. Для этого ёмкость конденсатора C3 нужно увеличить до 10 мкФ. Так же желательно усилить выходной ток компаратора транзистором VT1 (коэффициент его усиления нужно подобрать как можно больший). Для визуализации работы генератора можно включить цепь индикации питания светодиод HL3 и резистор R6 параллельно ИК — светодиоду HL1 и резистору R1. При этом светодиод HL3 будет постоянно моргать с частотой генератора, примерно 0,8 Гц. При обнаружении препятствия начнёт моргать и светодиод HL2. Так же нужно помнить, что и сигнал на выводе OUT будет «моргать».

Монтаж дополнительных деталей можно осуществить на выносной плате, при этом, правда, придётся отводить в сторону от датчика препятствий шесть проводов. А можно также, с другой стороны платы датчика препятствий приклеить ещё одну плату и соединить все цепи между собой как короткими проводками, так проводами, просверленными насквозь через обе платы.

С интересом почитал так же статью в [2].

P.S.: Хотел сказать, что мне приятна эта плата тем, что на ней стоит пара подобранных ИК деталей, работоспособность которых сразу легко увидеть.

P.P.S.: Не смогут увеличить чувствительность этого инфракрасного датчика препятствий ни мозги Ардуино, ни супер-пупер компьютер. Схема такая :).

Литература:

  1. https://robotchip.ru/obzor-infrakrasnogo-modulya-prepyatstviya-lm393/
  2. https://freshgeek.ru/infrakrasnyi-datchik-prepiatstviia-na-komparatore-lm393/
  3. https://ledjournal.info/spravochnik/infrakrasnye-svetodiody.html

Электронный выключатель мультиметра

Этот электронный выключатель предназначен для установки в мультиметр, в котором нет своего штатного. В некоторых мультиметрах, к примеру, в DT-182, выключатель питания находится на галетном переключателе режимов работы, что приводит к быстрому износу контактов. В различной литературе приводятся схемы электронных выключателей для мультиметров. Однажды и меня посетила мысль о создании подобной конструкции. Схема сложилась сразу, вот она:

Электронный выключатель мультиметра
Электронный выключатель мультиметра. Схема

Этот электронный выключатель включается в разрыв минусового провода. Схема проста, и содержит всего шесть деталей, хотя резистор R2 может быть и исключён, его предназначение — снизить подгорание контактов переключателя SB1 при заряде/разряде конденсатора C1.

О других деталях: C1 — конденсатор, который переносит заряд включения/выключения, а так же является составной частью таймера; R1 — резистор разряда конденсатора C1; C2 — предназначен для стабильной работы выключателя при переключении SB1; VT1 — полевой транзистор с маленьким сопротивлением канала сток-исток во время включения, который я добыл из материнской платы стационарного компьютера.

О работе с выключателем: В нормальном состоянии цепь питания полностью обесточена, так как VT1 закрыт. При нажатии на кнопку SB1 конденсатор C1 быстро зарядится через резистор R2 и внутреннее сопротивление схемы мультиметра. При отпускании кнопки SB1, заряд накопленный на конденсаторе C1 попав на затвор VT1 откроет его. Мультиметр включится и будет работать до тех пор, пока не разрядится конденсатор C1 через сопротивление резистора R1. Когда такое произойдёт — мультимерт выключится. При номиналах C1 и R1 указанных на схеме, это время составит примерно 12 минут. Для выключения мультиметра до времени автоматического выключения, нужно кратковременно нажать на кнопку SB1, при этом конденсатор C1 быстро разрядится через резистор R2 и открытый переход сток — исток транзистора VT1. При отпускании кнопки, разряженный  конденсатор C1 зашунтирует собой оставшийся заряд на затворе и выключит транзистор.

Хочу сказать, что, как и любая другая простая схема, эта содержит недостатки. В чём её недостаток? В том, что нужно приноровиться в её работе. При включении кнопку SB1 нужно держать немного дольше, чем при выключении. А выключать нужно быстро.

В принципе, так как схема сделана как двухполюсник, то её можно включить и в разрыв положительного провода.

Фонарик HOROZ model HL338L и его переделка под Li-ion

Предлагаю вашему вниманию схему фонарика HOROZ.

Фонарик HOROZ model HL338L и его переделка под Li-ion
Фонарик HOROZ model HL338L. Внешний вид

Попросил знакомый отремонтировать фонарик. Что с фонариком? Долго лежал без дела. Вспомнил, зарядил и… не работает.

Вскрытие показало (как и было сразу предположено) неисправный кислотный аккумулятор. Есть у них такая фишка – после глубокого разряда умирать….

Фонарик HOROZ model HL338L и его переделка под Li-ion
Схема фонарика HOROZ model HL338L

Схему «поднял». Схема зарядки почти стандартная: гасящий конденсатор, диодный мост и аккумулятор. Единственное что введено, это «хитрый» стабилитрон на Z1, R4 и Q1. Плюс странная индикация заряда, и то уже «модернизированная». Что ещё интересно, так это наличие диодов D9 и D10. От чего они защищают светодиоды — не понятно?

Поступило предложение о замене кислотного аккумулятора на Li-ion. Схема сложилась сразу. Всё стандартно. Блок питания — это зарядка SAMSUNG. Контроллер заряда на микросхеме TP4056, со встроенной защитой аккумуляторов от перезаряда и глубокого разряда на микросхеме DW01A. И два Li-ion аккумулятора по 3400 мАч. С платы фонарика было удалено всё «лишнее». Единственное, что было изменено, так это установка двух одиночных светодиодов красного и синего цвета свечения и общая перекоммутация.

Фонарик HOROZ model HL338L и его переделка под Li-ion
Фонарик HOROZ model HL338L Переделанный

Прозвонки наладчика и электрика

Прозвонку цепей применяют всегда при монтажных и пусконаладочных работах. Хоть и существует большой парк АВО-метров и мультиметров, но всё равно очень часто применяют простейшие прозвонки. Это и такие пары как: батарейка – лампочка, батарейка – светодиод, батарейка – телефонная трубка. Так же прозвонки очень часто встраиваются в мультиметры. И всё это прекрасно работает до тех пор, пока вы «не влезете» в высокое напряжение. И все эти прозвонки «благополучно» сгорают. После очередного объекта, почти у каждого инженера сгорает по одному, и иногда более одного, мультиметра. Вот я и задумался о схеме прозвонки не сгорающей при попадании высокого напряжения на входные зажимы. Однажды увидел у рабочих пробник фирмы APPA Technology Corporation – Voltest-S, который позволяет прозванивать низкоомные цепи, и при этом «не сгорает» при попадании высокого напряжения на входные клеммы, а также способен индицировать величину напряжения в нескольких градациях. Поискав в Интернете цену на этот пробник, был неприятно удивлён – всё таки это не прибор, что бы так стоить….  

Введение. Вначале были «вялые» попытки, ни как не мог «нащупать нить». Однажды попалась статья в [1], очень интересная схема. Кроме прозвонки в четырёх градациях сопротивления цепи, можно проверять конденсаторы и полупроводниковые приборы. Повторил, настроил по рекомендациям  – всё работало. Сократил количество микросхем до одной, но всё же, это было не совсем то – не было чёткой индикации попадания на входные клеммы пробника напряжения. Начались более плотные поиски новых схемных решений. От логических элементов в измерительной цепи пришлось отказаться сразу – разброс входных характеристик у них очень высок. Обратил внимание на операционные усилители (ОУ). Дело пошло веселее. Опробовал около двух десятков схемных решений, было создано несколько схем, которые более-менее работали и индицировали четыре градации прозвонки цепи, и по две градации напряжения в обеих полярностях и с соответствующей звуковой индикацией. Довёл в одной конструкции количество ОУ до 9 штук. Всё работало, но…. Это ведь пробник, а не крутой прибор. Вернулся к началу….

Часть 1. Прозвонка наладчика. Прозвонка в промышленных мультиметрах, собранная на ОУ включенном по схеме компаратора, наверное, является идеальной схемой. Эту схемотехнику я и применил в моей окончательной конструкции. Всего лишь, пришлось устранить недочёт в схемотехнике мультиметров. Нет, в схемах мультиметров я не сомневаюсь, просто они не предназначены для таких перегрузок. При попадании высокого напряжения на клеммы прибора в режиме прозвонки сгорает R8 (к примеру, в схеме мультиметра M266F в [4] стр. 64) номиналом 2,2 кОм, который является нагрузкой измерительной цепи через источник питания мультиметра. Это удалось устранить, увеличив, всего лишь, номинал резистора до 44 кОм (два резистора сопротивлением по 22 кОм последовательно, ведь, как известно, резисторы «рассчитаны» на напряжение примерно 250 вольт, да и чтобы применить резисторы с пониженной мощностью рассеивания).

Прозвонки наладчика и электрика
Прозвонка наладчика. Схема

Измеритель цепи выполнен по стандартной схеме компаратора напряжения на ОУ. Выход компаратора нагружен на делитель напряжения R17, R18 для корректной работы смесителя – инвертора на транзисторе VT6. Режим этого транзистора выбран таким образом,  что при появлении на выходе компаратора напряжения, оно открывает транзистор не полностью. Но этого напряжения вполне достаточно, чтобы логический элемент DD1.1 воспринял его как логический ноль и своим выходом закрыл диод VD5 и разрешил работу звукового генератора собранного на элементах  DD1.2 и DD1.3. Такой режим выбран для того, чтобы можно было подмешать и другие сигналы, более токовые. Так же логический элемент DD1.1 управляет работой светодиода HL3 «Цепь» и цепью разряда конденсатора таймера C5.

Схема измерителя напряжения собрана на транзисторах VT1, VT2 и оптроне U1. Светодиоды HL1 и HL2 индицируют полярность входного напряжения, соответственно «+» и «-». Работа этого узла описана в [2]. Отличие этой схемы от других в том, что она индуцирует величину входного напряжения в соответствующую частоту (преобразователь напряжение – частота). При входном напряжении от 10 до 300 вольт, на выходе частота изменяется от 0,25 до 30 Герц. Эти выходные характеристики устанавливаются подбором резистора R5 в широких пределах. Иногда может понадобиться и подбор конденсатора C1. Применение оптрона U1 позволило простыми средствами развязать не совместимые гальванически схемы. На время регулировки можно включить параллельно диоду VD3 цепочку из сверхяркого светодиода и резистора 100 Ом. Фототранзистор U1.2 открываясь, пропускает напряжение питания через резистор R24 на базу транзистора VT6. Цепочка R23, C2 придаёт звуку большую мелодичность, затягивая спады импульсов. Резисторы R23 и  R24 служат для снижения тока конденсатора C2 через транзистор оптрона.

Транзисторы VT4 и VT5 образуют схему обнаружения скрытой проводки в стенах, а также большой напряжённости электрического поля. Следует добавить, что режимы измерения электрического поля и напряжения работают без включения питания, так как микросхема питается всегда и в дежурном режиме потребляет минимальный ток в 0,03 мА. Основной ток потребления, а это 2 мА, потребляет схема прозвонки цепи и 5 мА при измерении большого напряжения, поэтому и сделано отключение этого режима через ключ на транзисторе VT3.

Питается всё устройство старым Li-ion аккумулятором от мобильного телефона с внутренним контроллером. Можно конечно использовать и новый аккумулятор. Пробник оборудован схемой индикации заряда и разряда. При подключении блока питания от мобильного телефона (5 вольт), через разъём XS3 начинается зарядка аккумулятора. Номинал резистора R40 выбран таким, чтобы ток заряда был равен примерно десятой части от ёмкости аккумулятора (1000 мА/час). Такой режим обеспечивает заряд, без контроля температуры аккумулятора. Светодиод  HL6 «Контроль» светится во время заряда. Когда внутренний контроллер отключит аккумулятор от устройства, светодиод погаснет.

Если во время пользования прозвонкой нужно будет узнать величину разряда (заряда) аккумулятора, то нужно нажать на кнопку SB2 «Контроль», при этом к базе транзистора VT9 подключится стабилитрон VD7 и разность напряжений отобразится в виде свечения светодиода HL6 «Контроль». Яркое свечение покажет хороший заряд, слабое свечение или отсутствие свечения укажет на то, что требуется зарядить аккумулятор. Резистором R39 выбирается режим работы индикатора.

На логической микросхеме DD1 собрана схема, так сказать, сервисных услуг. Это схемы включения/выключения измерителя цепи, таймера автоматического отключения, схема сброса таймера и звуковой индикатор.

На элементах DD1.5 и DD1.6 собран выключатель, работа его описана в [3]. При нажатии на кнопку SB1 «Вкл./Выкл.» триггер переключится и логическая единица на выводе 8, запитает светодиод HL4 «Питание», а так же через резистор R33 начнёт заряжаться конденсатор C5 таймера собранного на логическом элементе DD1.4. Когда конденсатор C5 зарядится, а это примерно 10 минут, на выводе 12 появится логический ноль, который откроет транзистор VT8 и перебросит таймер включения в выключенное состояние. При этом логическая единица на выводе 10 через резистор R28 и конденсатор C3 приоткроет фототранзистор оптопары U1.2, на время заряда конденсатора и прозвучит сигнал предупреждения отключения питания. Любое измерение будет вызывать свечение светодиода HL3 «Цепь» и звучание пьезокерамического капсюля с резонирующей камерой BF1, посредством генератора на логических элементах DD1.2 и DD1.3, а также будет разряжаться конденсатор таймера C5, входящим в насыщение транзистором VT7, и после каждого измерения таймер будет считать время до выключения заново.

Так же в пробнике предусмотрен фонарик, освещающий щуп  для того чтобы легче было найти измеряемую цепь в хитросплетении проводов.

Детали. Светодиоды взяты из светодиодной цветной ленты, состоящей из отдельных сверхярких светодиодов. Главное чтобы светодиоды HL1 и HL2 были одного цвета и из одной ленты. Светодиод фонаря можно взять любой, белого свечения с линзой с углом рассеивания до 30о. Все транзисторы КТ315 и КТ361 с любой буквой, можно так же применить – КТ3102Б и КТ3107Б соответственно. XS3 – можно взять из неисправного, мобильного телефона, у которого сохранилось зарядное устройство. Донором для BF1 может стать любой пьезокерамический капсюль с резонирующей камерой, к примеру, от «сгоревшего» мультиметра. Сенсор Е1 представляет собой провод в изоляции растянутый внутри корпуса длиной примерно 10 сантиметров.

Настройка. Необходимо подобрать резистор R14 такого номинала, который бы удовлетворял ваши потребности. При номинале, указанном на схеме, предел измерения цепи ограничен 30 Ом. Какой нужно установить – не понятно. Проведя анализ по характеристикам приборов из [4], результат был такой: у мультиметров М300, М320, М830, М832, М838 пределы прозвонки цепи ограничены 1000 Ом, а у MY61, MY62, MY64, MY68, M890 и M9205 – до 30 Ом. И ещё с падением напряжения питания этот режим сдвигается в сторону увеличения. Резистор R5 – установка частоты от входного напряжения (от 10 Ом до 100 кОм). Отношение резисторов R17 и R18 подобрать в случае отсутствия «трелей» в режиме индицирования напряжения. Резистор R22 подобрать по току светодиода. Резистор R40 подобрать по требуемому току заряда. Резистор R31 подобрать по резонансу применённого капсюля.

Часть вторая. Прозвонка электрика.  Эта схема была одним из итогов поиска нужной схемотехники. Идея этой схемы в том, чтобы в составе прозвонки были лампы накаливания, которыми электрики нагружают прозваниваемые цепи. Просто включить в предыдущюю схему лампочки не представляется возможным. Поэтому, было принято решение, создать схему, которая измеряла бы цепь через лампочки. Режимы компаратора устанавливаются посредством диодов. Применить ОУ не получилось – из-за очень большого усиления последнего: в схему очень сильно проникали переменные токи из сети. Которые отфильтровывались, только с очень сильной инерцией. Поэтому был применен лишь кусочек от ОУ – дифференциальный каскад. Так как этот каскад потребляет меньший ток, чем в предыдущей схеме, то он был запитан прямо от 8 вывода DD1.6. EL1 и EL2 установлены с той целью, что существует возможность, попасть в две фазы, а это 380 вольт, при котором одна лампочка сразу сгорит. В принципе, можно включить и три лампочки. Следует помнить, что после подачи напряжения на щупы прозвонки лампочки разогреются и сопротивление их увеличится. И чтобы выйти на нормальный режим прозвонки цепи, нужно подождать, пока лампочки остынут.

Прозвонки наладчика и электрика
Прозвонка электрика. Схема

Детали. В данной схеме нужно подобрать одинаковые транзисторы VT3 и  VT4 с коэффициентом  усиления не менее 150. EL1 и EL2 типа «Миньон», желательно поставить одной мощности от 10 до 50 ватт в керамических патронах.

Настройка. Настройка сводится, кроме всего того, что в предыдущей схеме, к подбору резистора  R9, которым устанавливается требуемое сопротивление цепи прозвонки при холодных накалах лампочек EL1 и EL2.

P.S. Схемы были созданы только на экспериментальных платах. Соответственно печатных плат не было.

Литература.

1. Четырёхуровневый экономичный пробник. С.Сташков Радио №8, 2002 г. стр.30

2. В помощь радиолюбителю. Вып. 13: Информационный обзор для радиолюбителей/ Сост.М.В.Адаменко. – М.: НТ Пресс, 2007. – 64 с.: ил. – (Электроника своими руками). стр.5

3. Популярные цифровые микросхемы/ В.Л.Шило: Справочник. – 2-е изд., исправленное. – М.: Радио и связь, 1989. – 352 с., ил. ”МРБ”, Вып. 1145. 1989 г.  стр.221

4. Современные цифровые мультиметры/ Д.А.Садченков – М.: СОЛОН-Пресс.- 2002. – 112 с., серия “Библиотека ремонта” вып.1

Две прозвонки в одной

Предлагаю вашему вниманию схему двух прозвонок. Они совмещены в одном устройстве, так как в обеих присутствует один и тот же узел. Это генератор – двухполюсник, то есть его можно включить последовательно с нагрузкой. Одна прозвонка, это можно сказать и не прозвонка, а индикатор наличия напряжения с двумя входами, для того что бы можно было контроллировать напряжения разных полярностей. Вторая прозвонка – это пробник для определения исправности излучающих акустических приборов звуковой частоты.

Две прозвонки в одной
Две прозвонки в одной. Схема

Генератор собран по схеме стандартного мультивибратора на транзисторах VT4 и VT5 с рабочей частотой примерно 2000 герц. С коллектора транзистора VT5 сигнал, через защитный резистор R11 поступает на усилитель тока, это VT6 и VT7, собранные по схеме составного транзистора Дарлингтона.

Если этот генератор включить последовательно через источник питания, то на нагрузке будет присутствовать звук. Таким образом можно проверять различные динамические звуковые излучатели, на схеме для этого предназначены клеммы ХТ7 и ХТ8. Что бы проверить работоспособность звуковых пьезоизлучателей, нужно последний подключить параллельно коллектору и эмиттеру транзистора VT7 и последовательно с источником питания включить дроссель. В схеме это реализуется с помощью катушки индуктивности L1 и кнопки SB1. Звуковые пьезоизлучатели нужно подключять к клеммам ХТ5 и ХТ6.

На транзисторах VT2 и VT3 собрана прозвонка напряжения с перепадом с низкого на высокое напряжение. На  VT1 собрана прозвонка напряжения с перепадом с высокого на низкое напряжение. При появлении контроллируемых напряжений транзистор VT3 открывается и подключает к генератору встроенный в схему звуковой динамический излучатель BF1. Эта прозвонка предназначена для индикации работы таймеров собранных на микросхемах КМОП.

Транзисторы в устройстве применены самые ходовые, их можно заменить на любые соответствующей структуры.

Когда прозвонками не пользуются, то они практически не потребляют тока и поэтому устройство можно питать от автономного источника тока без выключателя питания. Прозвонки работоспособны при питании от 2 вольт, сам генератор работает и при напряжении питания от 1,5 вольт, но сила звука минимальна. Питание в 5 вольт самое оптимальное. При увеличении напряжения питания, возрастут и токи потребления, что повлечёт за собой увеличение мощности выходного транзистора  VT7, а возможно и  VT3, всё зависит от сопротивления звуковой катушки динамического излучателя BF1. Катушка индуктивности L1 была подобрана «на слух» из имеющихся в наличии.

Плату разработал на тетрадном листе в клетку, изображение перенёс на омеднёную сторону с помощью шила. Из-за не желания возиться с реактивами, плата была обработанна дремелем – с помощью фрезы вырезал канавки между токопроводящими дорожками, затем с помощью войлочного круга и пасты ГОИ зашлифована до блеска с последуюшей промывкой спиртом, и далее пролудил припоем.

Когда встал вопрос о корпусе, то было решено вмонтировать прозвонки в блок питания, так как в нём было свободное место и блок питания всегда находится на рабочем столе.

Полный автостоп

Полный автостоп – это устройство, отключающее от сети аппарат (в котором оно установлено) после того, как пропадёт сигнал «на выходе» устройства. Схема была сделана по заказу для магнитофона «Комета-225-стерео» и функционировала около двадцати лет. За время эксплуатации была всего одна поломка – истёрлись контакты выключателя сети на П2К.

Полный автостоп
Полный автостоп. Схема

Описание работы: Схема питается от платы индикации и управления магнитофона. При нажатии на кнопку SВ1 ток из сети запитает устройство и так как конденсаторы С3 и С4 разряжены, то транзистор VT3 будет закрыт, а транзистор VT4 открыт, реле К1 сработает и своими контактами заблокирует кнопку включения сети. Если кнопку держать больше секунды, то после её отпускания устройство отключится от сети, потому что успеют зарядиться конденсаторы С3 и С4 от блока питания через резистор R6. Чтобы этого не произошло, кнопку не рекомендуется держать нажатой более одной секунды. Диод VD1 подключается анодом к ключу индикатора «СТОП». Когда ключ разомкнут, работает мультивибратор на транзисторах VT1,VT2 и через цепочку R5,VD2 короткими импульсами разряжает конденсатор C4, который постоянно подзаряжается от БП через резистор R8. Если мультивибратор остановится, то на коллекторе транзистора VT2 появится высокий уровень, который запрёт VD2 и примерно через 1-2 минуты (зависит от величины напряжения БП и сопротивления резистора R8) транзистор VT3 откроется, а транзистор VT4 закроется, реле К1 отпустит свои контакты и устройство выключится. Оно также выключится, если кратковременно нажать кнопку SA1 — заряженный конденсатор C3 быстро зарядит С4 и так далее по цепочке. Параллельно обмотки реле К1 диод не ставился, так как питание схемы очень низкое, а выходной транзистор триггера VT4 довольно таки «высоковольтный».

Детали: Номиналы всех элементов подобраны эксперементально. В качестве транзисторов VT1 – VT3 можно применить практически любые транзисторы, к примеру — КТ315Б (Г), КТ312Б, КТ342Б. Транзистор VT4 – любой из КТ503, КТ608, КТ815. Диоды VD1, VD2 – любые из серий КД102, КД103, КД521, КД522. Конденсаторы С1… С4 – К50-35 или импортные аналоги. Можно использовать и другие типы конденсаторов с рабочим напряжением не менее 10 В. Реле К1 было применено импортного производства с сопротивлением обмотки 230 Ом, так как питание платы индикации равно +5В.

Список подобной литературы:

  1. Полный автостоп в «Снежить-204-стерео». В.Таранов Радио №11, 1986 г. стр. 34
  2. Автовыключатель телевизора. В.Суров. Радио №4, 1994 г.
  3. Автовыключатель УМЗЧ. А.Камилатов. РадиоКонструктор №9, 2010 г. стр. 8

Имитатор АТС — прибор для ремонта и наладки ТА

Однажды хороший знакомый обратился ко мне, с просьбой создания прибора для ремонта и настройки телефонных аппаратов (ТА). После некоторых экспериментов, я сделал данный прибор. Прибор собирал на основе сетевого калькулятора типа, к примеру, «Электроника МК-59».

От калькулятора взял корпус, трансформатор с анодной и накальной обмотками, выключатель и шнур сети, а также три кнопки. Плату тоже оставил, но основательно поломав голову, я пришёл к выводу, что дорожки использовать не возможно. Поэтому с платы удалил все ненужные дорожки с помощью паяльника и пинцета. Под новые детали просверлил новые отверстия, а монтаж выполил изолированным проводом.

Микроамперметр взял от магнитофона. Установил его в окошко, вырезанное в зеленом светофильтре слева от блока питания. Левее от микроамперметра, в корпусе установил динамическую головку, диффузором вверх. Напротив неё насверлил отверстий. Лицевую панель изготовил из кусочка подходящего по размеру пластика, в котором сделал отверстия под три кнопки, три индикатора, переменный резистор, розетку и винты крепления.  Вот схема:

Имитатор АТС — прибор для ремонта и наладки ТА
Имитатор телефонной станции. Схема

О схеме имитатора АТС. С выхода анодной обмотки, примерно 42 вольта, напряжение попадает на выпрямитель и далее на электронный дроссель VT6,  C10 и R23, который эффективно подавляет фон переменного тока. На выходе должно присутствовать напряжение близкое к 60 вольтам, которое поступает на питание выходной цепи прибора и на стабилизатор напряжения для цифровых микросхем (9 вольт), собранный на VT5,  VD3, C8,  R19 и R20. Этим напряжением, так же, питаются все индикаторные светодиоды. На DD1 собран псевдосенсорный коммутатор режимов работы. На DD2 собраны генераторы тона и звонка. Звонок формируется путём закорачивания выходной цепи прибора транзистором VT2, что обеспечивает разрядку конденсатора ТА в схеме звонка. В паузах это конденсатор заряжается от блока питания прибора через R21. Тональный сигнал формируется подобным образом, но с меньшим током, который ограничивается R12. PA1 с резисторами R17 и R18 образуют индикатор тока протекающий через ТА. Подбирая сопротивление резистора R18, устанавливают стрелку микроамперметра на отметку «0 дб», при подключенном к прибору ТА со снятой трубкой. С индикатора тока, через регулятор громкости R22 сигнал подаётся на усилитель приёма — VT7, VT8 (схема взята  из усилителя приёма зарубежных ТА). Резистор  R24 нужно подобрать такого номинала, чтобы на эмиттере VT8 установилось ровно половина напряжения питания. Нагрузка этого усилителя динамическая головка BA1. Усилитель приёма предназначен для проверки работоспособности микрофонной цепи и всего звукового тракта, путём продувания и подносом трубки к BA1 на определённое расстояние (регулируя регулятор громкости R22) до появления акустической завязки. Питание происходит так: с накальной обмотки, через выпрямитель  VD5, C14 и электронный дроссель VT9, C13 и R27, напряжение, примерно 5 вольт, подаётся на усилитель приёма.

Цепь  R1, C1,  VD1 — предназначена для начального сброса коммутатора. Цепь  VT4,  VD2, C7,  R13, R15, R16 и HL3 — для индикации состояния линии  при поднятой трубке. C7 — не даёт схеме ложно срабатывать при импульсном наборе, и при звонке. Цепь VT1, C2 и R3 сбрасывает коммутатор при поднятии трубки во время звонка.

Знакомый отзывался о работе прибора очень хорошо.

Громкая сирена на транзисторах

Предлагаю вашему вниманию схему громкой сирены на транзисторах. Эту схему я не «поднимал», мне её дали перерисовать, почти «из-под полы». Однажды, в разговоре с водителем нашего цеха, в далёком уже 1990 году, я узнал, что существует «запрещённая» ГАИ схема сирены для автомобилей. Мол, очень простая, и иногда, очень нужная в дороге вещь. И что самое главное, схема выполнена двухполюсником! То есть, для реализации сирены нужно всего лишь сам генератор, колокол (или мощный динамический громкоговоритель), кнопка и аккумулятор. И все эти элементы нужно соединить последовательно. И вот недавно просматривая свои архивы, я и наткнулся на эту схему.

После решения опубликовать схему сирены, я зашёл в Гугл, посмотреть подобные схемы и нашёл в нём почти такую же! По всей видимости, схему уже давно «подняли» с зарубежной сирены. Фотографии платы и схему можно посмотреть в [1]. А в [2] дано полное описание работы и даже схемы с увеличенной выходной мощностью.

Громкая сирена на транзисторах
Громкая сирена – двухполюсник на транзисторах. Схема

Вот схема, которую мне дали. От опубликованных в [1] и [2] она отличается наличием эмиттерного повторителя на транзисторе VT4. Собирал я схемы эти, и «свою», и из [1] и [2]. Сказать, что они звучат очень похоже на настоящую сирену, то значит соврать. Но, отдалённо похоже. Да, кстати, «свою» схему я нарисовал в точности с предоставленным оригиналом, и сразу указал, что транзистор VT1 установлен не правильно. На что получил ответ, что всё правильно и что в этом и состоит «изюминка» схемы. Включал я транзистор VT1 и правильно, и не правильно — всё работало. По-своему работало — но работало. Изменения в звучании сирены были, но не существенные. Самое неприятное и неправильное в этой схеме, это то, что она выполнена двухполюсником. При её работе, весь потребляемый постоянный ток течет через катушку громкоговорителя. Это, во-первых уменьшает полезную мощность отдаваемую нагрузке, а во-вторых, катушка очень сильно греется. И если обмотка громкоговорителя будет намотана на оправку из пластика, то последняя расплавится (что и произошло у меня с динамиками из детских игрушек). После этого я стал искать схемное решение, что бы исключить через громкоговоритель постоянный ток. И вспомнил я схему из моей бывшей работы электромонтёра по ремонту диспетчерских средств связи, а именно транзисторный преобразователь РТ-1А в [3]. Нашёл документацию и совместил две схемы. Добавилось в схему всего четыре радиодетали. Результат меня удовлетворил, надеюсь и тех, кто решит собрать эту схему.

Громкая сирена на транзисторах
Громкая сирена – на транзисторах. Схема

Добавлю ещё то, что если вы захотите установить сирену по этой схеме, на какую-нибудь детскую модель, то лучше всего питать её от пониженного напряжения 4-5 вольт.

И ещё — собирая эту сирену, поэкспериментируйте с изменением номиналов резисторов и конденсаторов — возможно, подберёте нужное вам звучание.

Литература:

1. https://xn—-7sbbil6bsrpx.xn--p1ai/ochen-gromkaya-sirena-na-tranzistorax.html

2. https://www.radiokot.ru/circuit/analog/games/18/

3. Секретарско-Директорское устройство телефонной связи TELSID UD-40.TD Техническое описание и инструкция по эксплуатации. стр. 68

Выключатель бра с автоотключением

Представляю вашему вниманию схемы, которые встраиваются внутрь светильников бра. Вообще-то не только в бра, но, и настольные, и настенные светильники. Такие светильники, мы иногда забываем вовремя выключить, по той или иной причине. Поэтому нужно в них встроить автоотключение. Эти схемы, просто вариации на тему выключателей с автоотключением и в них нет предупреждающих сигналов до выключения, как в предыдущем материале.

На рис. 1 показан первый вариант возможной схемы. Здесь схема построена на уже знакомых вам узлах. Это БКВП, сенсор на TTP223 и таймер C005. Эту схему можно легко переделать с регулировкой временем отключения (смотрите, к примеру, схему на рис. 3). Соответственно включается она сенсором, правда придётся переделывать корпус. А именно, как-то задекорировать образовавшуюся дырку от механического выключателя. Кстати, здесь, из схемы удалён конденсатор, который стоял на плате модуля сенсора по питанию TTP223. При нём схема возбуждалась на очень низких частотах.

Выключатель бра с автоотключением
Рис.1 Выключатель бра с автоотключением

На рис.2 показан второй вариант. В этой схеме, по сравнению с предыдущей, отсутствует таймер C005. Я его заменил на RdC – таймером на диоде VD1, конденсаторе C1 и транзисторе VT3. Полевой транзистор, выполняет здесь, роль одного логического элемента НЕ. Эту схему, так же, можно легко переделать со ступенчатой регулировкой временем отключения (смотрите, к примеру, схему на рис. 4). Резистор R4 выполняет роль разрядника конденсатора таймера C1 при выключении бра от сети. Так как светодиоды, обладающие параметрами близкими к стабилитронам, не разряжают полностью конденсаторы.

Выключатель бра с автоотключением
Рис.2 Выключатель бра с автоотключением

На рис. 3 – третий вариант. Здесь включение/выключение бра происходит от штатного выключателя SB1, он, как правило, находится на шнуре питания. Ручку переменного (а может и подстроечного) резистора R2 нужно установить так, чтобы любопытные не крутили её почём зря.

Выключатель бра с автоотключением
Рис.3 Выключатель бра с автоотключением

На рис. 4 изображён четвёртый вариант. Это вариация на тему схем на рисунках 2 и 3. Резистор R1 разрядник конденсаторов C1-C3 RdC – таймера. Переключателем SB1 можно выбрать нужное время до отключения.

Выключатель бра с автоотключением
Рис.4 Выключатель бра с автоотключением

На рисунках 5 и 6 представлены следующие схемы автовыключателей бра. Это, пожалуй, самые простые варианты третей и четвёртой схем. Так как эти автоотключатели встраиваются в корпус бра, а не во внешние выключатели, то схему питания можно упростить. Здесь светодиоды HL1 выполняют роль не только индикации работы, но и стабилизации напряжения питания схем. В пятой схеме диоды VD1 и VD2 выполняют роль увеличителей напряжения питания. Их можно из схемы и удалить, если будет установлен синий светодиод (HL1), у которого напряжение работы три и более вольт. Если светодиод HL1 будет, к примеру, зелёного цвета, то диоды VD1 и VD2 устанавливать обязательно.

Выключатель бра с автоотключением
Рис.5 Выключатель бра с автоотключением
Выключатель бра с автоотключением
Рис.6 Выключатель бра с автоотключением

Внимание! Все эти конструкции находятся в гальванической связи с сетью, с высоким напряжением! Будьте предельно осторожны при макетировании и испытаниях! Обеспечивайте этим конструкциям хорошую изоляцию, с целью безопасной эксплуатации!

Выключатели освещения с автоотключением

Предлагаю вашему вниманию плод моих шестилетних поисков. Первые потуги в реализации идеи выключателя освещения были начаты в 2013 году. Микросхем TTP223 и C005 я тогда ещё не знал (да и не было их ещё, наверное), поэтому я экспериментировал с кнопочным псевдосенсором на моей любимой микросхеме К561ЛН2. Так же не было у меня ещё БКВП — блока автономного оптотиристорного коммутатора нагрузки с вампирным питанием внешних устройств. Была только идея и немного энтузиазма (почему немного, да потому что работа у меня командировочная, с выездом из дома на несколько месяцев, а там даже особых идей не возникает из-за напряжённого рабочего времени).

Идея была таковой – заменить выключатель освещения сенсором (так как сенсора тоже не было, то – кнопочным псевдосенсором) с автоотключением через несколько часов. Ну, это для любителей забывать выключить свет, которые легли нечаянно поспать (к коим, и я иногда отношусь). При этом выключатель должен был «моргнуть» светом (спящий не увидит и не отреагирует), когда подойдёт время таймера отключения, и по прошествии примерно двух минут, выключить освещение, если никто никак не отреагирует на предупреждение. Если во время этих двух минут, кто-либо «стрельнет» пультом ДУ телевизора (или хлопнет в ладоши, всё зависит от применяемого типа сенсора), и выключатель «услышит» этот сигнал, то в ответ «моргнёт» светом и сбросит таймер отключения. Вот, пожалуй, и вся работа выключателя освещения. Да и ещё – вся схема должна была бы вместиться в монтажную коробку выключателя. К этой идее я периодически возвращался с попеременным успехом. Скажем так – отрабатывал узлы.

Так появился БКВП. Ранее использовал ключевым элементом высоковольтные транзисторы, какие мог себе позволить – 2N13003. И они нормально работали с лампами накаливания до 40 ватт. Но, сгорали, как только подключал светодиодные лампы. Тиристор решил проблемы.

Долго «изобретал» схему электронного уха. Но после нескольких испытаний, мне указали, что «такие звуки» не всем нравятся. Поэтому перешёл на ИК диапазон частот. Ведь пульты ДУ есть почти у всех, и схема сразу сократилась до интегрального приёмника ИК диапазона. Схема «электронного уха» тоже имеется.

Пожалуй, самым не проверенным был RC-таймер на  rобр.д — обратном сопротивлении диода по постоянному току. Только такой таймер, мне представлялся самым простым и перспективным в этой идее. Ведь, для схемы одного таймера, в принципе, нужно лишь три детали – диод, конденсатор и один логический элемент НЕ. И главное то, что по сути, это двухполюсник – подал на вход включающее напряжение и жди, когда на выходе появится задержанный сигнал.

И вот когда появились TTP223 и C005 я понял, что вскоре всё сложится.

Первая схема (рис.1), которую я хочу предложить вашему вниманию, является, скажем, так – самой большой. Так как в ней применено два таймера C005. Основной таймер, это микросхема DD4, настроенная, примерно, на четыре часа и таймер «отключения» на DD3, настроен на 2 минуты.

Выключатели освещения с автоотключением
Рис.1 Выключатель освещения с автоотключением. Схема

Как работает. При подаче сетевого напряжения на клеммы питания, нужно подождать несколько секунд, пока зарядится конденсатор C9 в БКВП, ведь он установлен большой ёмкости. Когда напряжение питания появится, то микросхема сенсора DD2 будет запитана, через открытый ключевой транзистор VT5, последний открывает ток базового резистора R20. Схема находится в дежурном режиме, и ток потребляет только микросхема сенсора. Микросхема DD1 находится в статическом режиме и практически не потребляет тока.

Сразу скажу, что конденсатор, стоящий возле выводов питания микросхемы сенсора ёмкостью 0,1 микрофарада стоит на плате рядом с последней, так как в этой конструкции я применял модуль-плату сенсора на TTP223, потому что, кроме микросхемы она содержит и сенсор E1. Да, светодиод с этой платы снят, за ненадобностью.

Так как вывод 4 микросхемы DD2 никуда не подключен, то сенсор работает в триггерном режиме. Если прикоснуться к сенсору E1, то на выводе 1 микросхемы появится лог. 1, которая запустит две схемы — схему включения питания основного таймера, и схему питания светодиодов индикации включения и оптрона U1.1, который запустит тиристор VD6. Светодиод HL2 погаснет, а лампа LH1 загорится.

Когда таймер DD4 досчитает время до конца, то на его выводе 3 появится лог. 1, и через логические элементы DD1.5 и DD1.6 будет запущен таймер DD3, который начнёт отсчёт своих двух минут. С выхода DD1.5 лог. 0 будет подан на левый вывод конденсатора C5, и пока он будет заряжаться через резистор R6, лог. 1 с выхода DD1.1 через открытый диод VD3 откроет транзистор VT4, что вызовет «моргание» света примерно на пол секунды. Так же этот лог. 0 с выхода DD1.5 откроет ключ VT2 питания внешнего сенсора. Это напряжение запитает так же индикаторный светодиод HL1 (рис. 2) на плате внешнего сенсора. Он установлен для визуализации включения внешнего сенсора.

Если внешний сенсор не сработает, то через две минуты на выводе 3 таймера DD3 появится лог. 1, которая откроет транзистор VT8, а он уже практически закроет транзистор VT5. Микросхема сенсора DD2 будет обесточена и всё, чем она управляла, закроется. Пропадёт так же и напряжение питания на микросхеме таймера DD3. Транзистор VT8 закроется тоже, и опять напряжение питания появится на сенсоре DD2. Вся схема перейдёт в ждущий режим.

Но, если в последние две минуты, кто-то направит любой пульт ДУ (главное, чтобы совпадали частоты кодировки импульсов) в сторону ИК-приёмника U1 (см. на рис. 2 б) и нажмёт на любую кнопку, то несколько импульсов попадут на умножитель напряжения (конденсаторы C1, C3 и диоды VD1, VD2), которое будет приложено к базе транзистора VT1. Он откроется и подключит левый вывод конденсатора C4 к общему проводу, и пока последний будет заряжаться через резистор R7, лог. 1 с выхода DD1.2 через открытый диод VD4 откроет транзистор VT4, что вызовет «моргание» света примерно на пол секунды. Так же эта лог. 1 с выхода DD1.2 откроет ключ VT3, который прервёт цепочку питания основного таймера DD4, на те же пол секунды. И этого времени хватит, чтобы обнулить его выход. Таймер DD4 начнёт считать заново свои четыре часа.

Если внешним сенсором будет стоять «электронное ухо», то в ответ на «моргание» нужно произвести громкий резкий звук, коим может быть хлопок в ладоши или свист. В подтверждение принятия сигнала выключатель «моргнёт» светом и погаснет светодиод HL1 на плате внешнего сенсора.

На рисунке 2 представлены схемы двух внешних активных сенсоров – звуковой и ИК — диапазона. Звуковой сенсор (рис. 2 а), это переделанная плата Звукового включателя светодиодных и ламп накаливания – с неё сняты не нужные детали (те, что остались, помечены звёздочками со своими позиционными номерами). И добавлен световой индикатор HL1, который показывает, что действительно сработал основной таймер. Так же добавлен трёхжильный кабель со своим разъёмом XR1.

Выключатели освещения с автоотключением
Рис.2 Внешние сенсоры. Схема

Приёмник ИК – диапазона (рис. 2 б) также оснащён световым индикатором HL1 включения основного таймера. К нему так же нужно подключить трёхжильный кабель со своим разъёмом XR2. Для чего нужны кабели? Дело в том, что, как правило, выключатель любого помещения, находится вне этого помещения. И что бы всё работало хорошо, внешние сенсоры должны находиться в том помещении, которое освещается. И нужно их расположить так, чтобы вы хорошо видели светящийся светодиод из основного места пребывания в комнате (к примеру, между стеной и наличником двери). Из двух сенсоров, нужно выбрать один и из схемы убрать ненужные детали. Так же, на рис. 2 в, изображён кнопочный «сенсор», может кому-то такой вариант ближе по реализации. Плату с кнопкой и светодиодом нужно поставить близко к месту вашей постоянной дислокации.

Детали. В этих конструкциях могут стоять любые маломощные транзисторы соответствующей структуры с коэффициентом усиления не менее 120, а транзистора VT7 не менее 150. Номиналы резисторов и конденсаторов могут изменяться в широких пределах. Только несколько деталей имеют ограничения в номиналах. Конденсаторы C3 и C9 – ёмкости должны быть не ниже указанных на схеме. Резисторы R15 и R16 подобрать таких номиналов, которые вам нужны по времени таймеров. Если вам не нужна индикация включения, то HL1 и R14 можно исключить. Да и ещё – дорожки печатной платы в цепи питания должны выдерживать нужную мощность нагрузки. А также, должна быть обеспечено малая потеря тока в цепи запитывания светодиода оптрона.

На рисунке 3 изображен второй вариант выключателя с автоотключением – это «облегчённая» схема на один интегральный таймер C005. Его заменил RdC – таймер на диоде VD1, конденсаторе C3 и логическом элементе DD1.1. Диод VD1 нужно подобрать, что бы при конденсаторе ёмкостью 0,1 микрофарада таймер выдал время 27-33 секунды. Тогда при номинальной ёмкости C3 таймер выдаст примерно нужное время – 2-2,5 минуты.

Выключатели освещения с автоотключением
Рис.3 Выключатель освещения с автоотключением. Схема

Эта схема, практически работает аналогично предыдущей, только отличие в ключе питания микросхемы сенсора DD2. Здесь транзистор VT5 другой структуры. Всё поменялось из-за изменённой схемы таймера отключения. Когда ключ VT2 питания внешнего сенсора выключен, то катод диода VD1 находится на общем проводе. Конденсатор C3 разряжен и на выводе 3 логического элемента DD1.1 присутствует лог. 0. Соответственно на выводе 4 лог. 1, которая открывает транзистор VT6 через базовый резистор R8. А уже VT6 через базовый резистор R20 открывает ключ питания микросхемы сенсора VT5. Когда же сработает основной таймер DD3 и откроет ключ VT2 питания внешнего сенсора, ток через диод VD1 начнёт заряжать конденсатор C3. И когда RdC – таймер сработает, то на выводе 4 DD1.1 появится лог. 0, который последовательно закроет VT6, VT5 и отключит питание сенсора. И всё вернётся к дежурному режиму.

На рисунке 4 изображен третий вариант выключателя с автоотключением – это ещё более «облегчённая» схема, здесь совсем нет интегральных таймеров C005. В этом варианте, в качестве таймеров используются два RdC – таймера. Логика работы совершенно не изменилась. Основной RdC – таймер: диод VD6, конденсатор C8 и логический элемент DD1.4, а также триггер Шмитта на логических элементах DD1.5, DD1.6 и резисторе R17. Триггер Шмитта нужен для правильной работы индикатора включения индикации.

Выключатели освещения с автоотключением
Рис.4 Выключатель освещения с автоотключением. Схема

На рисунке 5 изображён четвёртый вариант выключателя с автоотключением. Это схема, так сказать — alma mater всех этих схем. С этого варианта я начинал. Здесь нет сенсора на TTP223 и интегральных таймеров C005. Только кнопка и два RdC – таймера. Логика работы та же. В первоначальном варианте не было триггера Шмитта и по-другому организовывалась индикация «моргания». Схемное построение кнопочного выключателя описано в [1].

Выключатели освещения с автоотключением
Рис.5 Выключатель освещения с автоотключением. Схема

На рисунке 6 изображён пятый вариант выключателя с автоотключением. Эта схема родилась благодаря триггеру Шмитта. На предыдущих двух схемах, триггер Шмитта представляет собой классическую схемотехнику внутренности микросхемы К561ТЛ1 [2]. Тем более, что каждый логический элемент этой микросхемы имеет два входа – И-НЕ. Благодаря этому и родилась новая, ещё более облегчённая схема.

Выключатели освещения с автоотключением
Рис.6 Выключатель освещения с автоотключением. Схема

На рисунке 7 изображен вариант двойного выключателя с автоотключением. Такие выключатели, как правило, мы ставим в зале, на большую многорожковую люстру. Для примера, я объединил два выключателя из схем на рисунке 3 с «удвоенным» симисторным БКВП х 2.

Выключатели освещения с автоотключением
Рис.7 Двойной выключатель освещения с автоотключением. Схема

Настройка. Если монтаж выполнен правильно, то единственной настройкой, кроме времени работы таймеров, будет настройка напряжения питания схем. Оно должно быть выше 2,6 вольт (при таком напряжении уже нормально работают логические микросхемы 561 серии). Если напряжение будет ниже, или не будет работать схема (из-за питания), то тогда, первым делом повысьте напряжение, подключая параллельно аноду и катоду тиристора (или анодам симистора) добавочные резисторы, до получения нужного. Если, при включении нагрузки не будет полностью погасать светодиод индикации готовности работы схемы (а это означает, что тиристор (симистор) не полностью открылся), то нужно увеличить ёмкость конденсатора в БКВП или уменьшить номинал резистора в цепи управляющего электрода тиристора (симистора), до полного погасания светодиода.

P.S.: Да, схемы получились великоваты, хотя и работоспособны. И, наверное, никто и не решится их повторить (в своём доме), я-то уж точно. Почему? Да потому, что время не то. Лет бы 15-20 назад, точно сделал бы. Хотя бы, для того, чтобы у меня было, а у вас нет. Почему я не буду себе делать? Да, потому, что есть другие современные идеи, в частности об «Умном доме» и его вариантах.

Вот, не давно, погорел распределительный трансформатор в квартале, так полдня сидели все без света. И хорошо, что быстро сделали. А если бы день – два? Как жить без света в современном мире? Да и живу я в ремонте квартиры уже много лет. И могу себе позволить переделать проводку по своему усмотрению. А тот, у кого в квартире уже сделан красивый ремонт, может, я думаю, легко повторить эти схемы, если применит SMD радиодетали и кабельные каналы.

Внимание! Все эти конструкции находятся в гальванической связи с сетью, с высоким напряжением! Будьте предельно осторожны при макетировании и испытаниях! Обеспечивайте этим конструкциям хорошую изоляцию, с целью безопасной эксплуатации!

Литература:

  1. Популярные цифровые микросхемы/ В.Л.Шило: Справочник. — Челябинск: Металлургия, Челябинское отделение, 1989. — 352 с.: ил. — (Массовая радиобиблиотека. Вып. 1111). 1988 г. стр.213.
  2. Популярные цифровые микросхемы/ В.Л.Шило: Справочник. — Челябинск: Металлургия, Челябинское отделение, 1989. — 352 с.: ил. — (Массовая радиобиблиотека. Вып. 1111). 1988 г. стр.202.